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ABSTRACT

This paper presents a new method for representing
DNA sequences. It permits the representation and
investigation of patterns in sequences, visually
revealing previously unknown structures. Based on a
technique from chaotic dynamics, the method
produces a picture of a gene sequence which displays
both local and global patterns. The pictures have a
complex structure which varies depending on the
sequence. The method is termed Chaos Game
Representation (CGR). CGR raises a new set of
questions about the structure of DNA sequences, and
is a new tool for investigating gene structure.

INTRODUCTION
The Chaos Game

During the past 15 years a new field of physics has developed,
known as ‘non-linear dynamics’, ‘chaotic dynamical systems’,
or simply ‘chaos’ [1,2]. Central to much of the field are questions
of the structure of certain complex curves known as ‘fractals’.
These curves, which are, in a certain mathematical sense
‘infinitely complex’, have become quite well-known in the last
few years, especially with the appearance of articles accessible
to the non-mathematician, such as those by Dewdney in Scientific
American [3,4].

The Chaos Game is an algorithm which allows one to produce
pictures of fractal structures, using paper and pencil or, obviously,
a computer. In simplest form, it proceeds as follows:

1. Locate three dots on a piece of paper. They can be
anywhere, as long as they are not all on a line. We will call these
dots vertices (for reasons that will become clear in shortly).

2. Label one vertex with the numerals 1 and 2, one of the others
with the numerals 3 and 4, and the third with the numerals 5
and 6.

3. Pick a point anywhere on the paper, and mark it. This is
the initial point.

4. Roll a 6-sided die. Since in Step 2 the vertices were labelled,
the number that comes up on the die is a label on a vertex. Thus,
the number rolled on the die picks out a vertex. On the paper,
place a mark half way between the previous point and the
indicated vertex. (The first time the die is rolled, the ‘previous
point’ is the initial point picked in Step 3.) For example, if 3
is rolled, place a mark on the paper half way between the previous
point and the vertex labelled ‘3’.

5. Continue to roll the die, on each roll marking the paper
at the point half way between the previous point and the indicated
vertex.

One might expect that this procedure, if repeated many times,
would yield a paper covered with random dots or, perhaps, a
triangle filled with random dots. Such is not the case. In fact,
if the Chaos Game is written on a computer (using a random
number generator for the ‘die’), and is run for several thousand
points, the result is as shown in Figure 1. This figure has been
known in mathematics for many years, and is termed the
‘Sierpinski triangle’, after the mathematician who first defined it.

On seeing this result, one obvious question is, ‘What if you
start with a different number of initial points?’

For five points, six, or seven initial points the chaos game
produces a figure with visible patterns (pentagons within
pentagons, a striated hexagon, or heptagons within heptagons),
but for eight or more point the game yields essentially a filled-in
polygon, except that the center is empty.

With four initial points, however, the result is different. It is
not squares within squares, as one might expect; in fact there
is no pattern at all. The chaos game on four points produces a
square uniformly and randomly filled with dots.

The picture produced by the chaos game is known as the
attractor

Iterated Function Systems

Mathematically, the chaos game is described by an iterated
Jfunction system (IFS). An IFS is a set of pairs of linear equations,
each pair of the form x = ax + by + e,y = cx + dy + f.
Each pair of equations gives the formula for computing the new
value of the x and y coordinates. For example, the chaos game
on three points is played by marking the new point in the paper
half way between the previous point and the particular vertex.
Suppose coordinates of the vertices are (0, 0), (0, 1), and (1, 0).
Then, if 3 is rolled, vertex 2 is indicated, and the coordinates
of the new point are given by x = 0.5 - (x + 0) = 0.5x, and
y=0.5": (@ + 1.0) = 0.5y + 0.5, and similarly for the other
vertices.

With three vertices, and one equation per coordinate, we need
six equations. A more compact notation is to write w(x, y) =
(ax + by + e, cx + dy + f).

Thus, there is one equation (usually called a ‘mapping’ or
‘map’) for each, and each map is given by the 6 coefficients a
through f. For the Sierpinski triangle, the maps are:

w, 050005 0 0
w, 0500 05 0 05
w, 0.5 0 0 05 05 0.5

Since the choice of map is determined by a die (or random
number generator), each map has an associated probability, all
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Figure 1. The Result of the Chaos Game on Three Points.

equal in the case of the unloaded die. If the probabilities are not
equal, the shape of the attractor is unchanged, but the shading
may be [1].

In tabular form, including the probabilities, we can use the
following compact notation, which is known as the the IFS code:

Table 1: IFS Code for the Sierpinski Triangle

w a b c d e f p

1 0.5 0 0 0.5 0 0 0.33
2 0.5 0 0 0.5 0 0.5 0.33
3 0.5 0 0 0.5 0.5 0.5 0.33

The IFS code for the filled-in square is:
Table 2: IFS Code for the Filled-in Square

w a b c d e f p

1 0.5 0 0 0.5 0 0 0.25
2 0.5 0 0 0.5 0 0.5 0.25
3 0.5 0 0 0.5 0.5 0 0.25
4 0.5 0 0 0.5 0.5 0.5 0.25

Non-random Sequences

When the chaos game is played with 3, 5, 6, or 7 points, the
quality of the random number generator is not very important;
the same figure is produced, although it may take longer to ‘fill
out’. With 8 or 16 (or, to a lesser extent, 4) points, such is not
the case.

Quite by chance, the author and a colleague (G. M. Henry)
discovered that in these cases the random number generator can
make a very significant difference. As noted above, with a good
random number generator, the Chaos Game on 8 points produces
an almost-filled octagonal. However, when the game is played
using Turbo Pascal 3.0, which has a flawed random number
generator [9], elaborate patterns are visible, resembling a circle
within a circle, the circles connected by 8 (or, respectively, 16)
spidery lines.

Further, not all flawed random number generators produce a
visible pattern from Chaos Game; using DOS Basic (Version 2.1)
RND, which is quite a poor random number generator, the Chaos
Game on eight points produces no visible patterns.
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Figure 2. CGRs of the first 6 bases of HUMHBB.

Chaos Game Representation of DNA Sequences

Intuitively, non-randomness means that a sequence has
‘structure’. If a sequence of numbers is used to produce an
attractor for an IFS code, as described above, and that attractor
has visually observable then we have, intuitively, revealed some
underlying structure in the sequence of numbers.

The experiments desribed in the above section had shown that
the Chaos Game can be used to display certain kinds of non-
randomness visually.

This led to the following question:

Since a genetic sequence can be treated formally as a string
composed from the four letters ‘a’, ‘c’, ‘g’, and ‘t’ (or ‘u’),
suppose that, rather than random numbers, we control the Chaos
Game with DNA sequences? Instead of ‘rolling a 4-sided die’,
use the next base (a, c, g, t/u) to pick the next point. Each of
the four corners of the square is labelled ‘a’, ‘c’, ‘g’, or ‘u’;
if a ‘c’, for example, is the next base, then a point is plotted
half way between the previous point and the ‘c’ corner.

Example: The first 6 bases of the GenBank sequence
HUMHBB (human beta globin region, chromosome 11) are
‘gaattc’.

1. The first ‘g’ is plotted half way between the center of the
square and the ‘g’ corner.

2. The next base, ‘a’, is plotted half way between the point
just plotted and the ‘a’ corner.

3. The base ‘a’ is plotted half way between the previous point
and ‘a’ corner.

4. Next, ‘t’ is plotted half way between the previous point and
the ‘t’ corner.

etc.

Plotting these six bases, we obtain Figure 2.

As with the initial points of the Sierpinski triangle, little
significance is visible. However, if we continue for the entire
73,357 bases of HUMHBB, we obtain Figure 3.

We have termed the resulting picture the Chaos Game
Representation (CGR) of the sequence.

HUMHBB exemplifies a number of the characteristics of CGRs
in general, and of vertebrate sequences in particular.

1. Perhaps the most obvious characteristic of this CGR is the
almost empty area in the upper right quadrant (the g-quadrant).
A smaller copy of this ‘scoop’ appears in the upper left, or c-



Figure 3. CGR of Human Beta Globin Region on Chromosome 11 (HUMHBB)
(73,357 bases).

quadrant, presenting a double-scoop appearance. As discussed
in the next section, each point in the CGR correpsonds to exactly
one subsequence (starting from the first base), up to resolution
of the screen. Therefore this graphic pattern indicates repeated
patterns in the gene sequence. The same is true of any other
visible pattern.

Crudely, the ‘double-scoop’ corresponds to a comparative
sparseness of guanine following cytosine in the gene sequence;
a ‘g’ is plotted half way between the previous point and the ‘g’
corner. (This is dicussed in more detail below.)

2. Note that any base will always be plotted somewhere in the
quadrant with its label, since a base is always plotted half way
toward its corner.

3. Copies of the double-scoop, one in the t-quadrant and one
in the a-quadrant.

Looking at the top of the lower half of the picture, there are
two copies of the double-scoop, one in the t-quadrant and one
in the a-quadrant. Further, this continues: If we examine the
picture in horizontal ‘strips’ (in halves, quarters, etc.), we see
that at the top of each quarter-strip there are four copies; at the
top of each eighth-strip there are eight, and so forth. It thus
exhibits the property of self-similarity a concept very important
in the study of fractals and chaotic dynamics. Formally, a figure
is self-similar if a subset of it, with appropriate change of scale,
has the same shape as the overall figure. (‘Same shape’ is
formalized using the Hausdorff distance).

4. A rather noticeable feature of this CGR is the set of curves
on the top of the upper left quadrant of the plot, curving from
the solid block up and the the right.

5. Two visible characteristics of Figure 3 are related to the
underlying mathematics: (1) The division into squares, sub-
squares, etc., and (2) the self-similarity noted. If, for example,
we use the IFS code for the filled-in square is used, but with
the non-uniform probabilities shown in Table 3, we obtain
Figure 4.

This, however, is only part of the explanation; the other part
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Figure 4. Square Attractor with Non-Uniform Probabilities.

is a characterization of the subsequences that are missing, or
sparse, that lead to the structures shown in Figure 3. A partial
characterization of these sequences is presented below.

The features found in the CGR of HUMHBB are found in a
number of other genetic sequences. HUMALBGC (human serum
albumin gene, complete) and HUMADAG (human adenosine
deaminase gene, complete) are excellent examples. This pattern
has been found (to date) only in vertebrate sequences and those
of certain viruses such as HIV, hepatitis, and yellow fever.

Table 3: IFS Code for the Shaded Fill-in Square

w a b c d e f p

1 0.5 0 0 0.5 0 0 0.1
2 0.5 0 0 0.5 0 0.5 0.2
3 0.5 0 0 0.5 0.5 0 0.3
4 0.5 0 0 0.5 0.5 0.5 0.4

Properties of the CGR of a DNA Sequence

The relation between the CGR and the DNA sequence is of course
the central issue. Many of the aspects of that relation are
unknown, or lack a mathematical characterization, at this time.
Certain fundamental facts, however, can be noted.

1. The k-th point plotted on the CGR of a sequence corresponds
to the first k-long initial subsequence of the sequence, and no
other subsequence (up to the resolution of the screen). Thus, there
is a one-to-one correspondence between the subsequences
(anchored at the start) of a gene and points of the CGR.

2. Therefore any visible pattern in the CGR corresponds to
some pattern in the sequence of bases.

3. As noted, the resolution of the screen limits the detail that
may be shown on any one CGR. However, as with all fractals,
including those generated by IFS codes, any portion of the picture
may be magnified, revealing finer structure [1] Thus, if there
is an area of interest in which suspected structure is obscured,
it can be magnified to show the fine structure of the points and,
therefore, the structure of the sequences yielding the points. This
magnification is without limit (as long as there are more bases
in the sequence).

4. Adjacent bases in the sequence are not plotted adjacent to
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each other (except when the first point is close to a corner and
the next base is the same); being close in the CGR does not mean
being close in the sequence. Euclidean distance in the CGR
therefore implies a new metric on subsequences, or bases.

5. The question of when two points close in the CGR represent
similar sequences is a bit more complicated. In general, two close
points may correspond to different sequences. For example, in
Figure 2, note that the final point plotted, corresponding to the
final ‘c’, is spatially close to the second point plotted, but between
the first ‘a’ and the final ‘c’ is the sequence ‘att’.

However, this situation can only occur if the two points,
although close, are in different quadrants of the picture. Since
a base is always plotted in its quadrant, any sequence will always
be plotted somewhere in the quadrant of its last base, and
conversely any two points in the same quadrant must have the
same last base. Further, the notion of quadrant is recursive; each
quadrant can be divided into quadrants, etc.

Thus, in Figure 2, ‘g’ is plotted in the g-quadrant. Then ‘a’
is plotted in the upper right of the a-quadrant (the one with its
upper right vertex at the center of the entire figure), or what might
be called the ‘ga’ sub-quadrant. Any point in the g-quadrant would
be mapped to this subquadrant. Thus, ‘a’ produces a copy of
the g-quadrant that is one-half the size (side length) of the g-
quadrant, or one-fourth of the size of the entire picture. The next
‘a’ then produces a one-half size copy of the ‘ga’ sub-quadrant,
the ‘gaa’ sub-sub-quadrant, and then ‘t’ produces a ‘gaat’ sub-
sub-sub-quadrant.

Further, due again to fact that a base is plotted in its quadrant,
the converse holds as well: If two points are within the same
quadrant, they correspond to sequences with the same last base;
if they are in the same sub-quadrant, the sequences have the same
last two bases; if they are in the same sub-sub-quadrant the have
the same last three bases, etc.

Thus, we have the following:

Theorem 1. In a CGR whose side is of length 1, two sequences
with suffix of length k are contained within the square with side
of length 2*. Further, the center of the square is give by the
Jollowing recursive definition:
(a) The center of the suffix of O length is (1/2, 1/2)
(b) The if the center of the square containing sequences with suffix
wis at (x, y), then

i. the center of the square containing sequences with suffix wa
is (x/2, y/2);

ii. the center of the square containing sequences with suffix
we is (x/2, (y+1)/2);

iii. the center of the square containing sequences with suffix
wg is at (x+1)2, (y+1)2),

iv. the center of the square containing sequences with suffix
wt (or wu) is at ((x+1)/2, y/2).

Conversely, all points within this square correspond to
sequences with this suffix.

6. As a consequence of 4 and 5, the visible patterns in the CGR
represent global as well as local patterns. A density (or paucity)
of points in a region corresponds to a large (or small) number
of sequences with suffixes corresponding to the region. Also,
since each square region (sub-, sub-sub-, etc. quadrant)
corresponds to a particular suffix, any dense (or sparse) region
corresponds the union of S, S,, - - -, in which S, is the set of
sequences with suffix i.

The resolution of most monitors or printers is such that the
points for sequences with identical suffixes of length over 10

(maximum) are superimposed, in any given picture. However,
the magnification capability noted in Point 3 means that there
is no lower limit to the size of the square that can be displayed,
and therefore no limit on the length of suffixes represented.

The CGR method thus provides a graphic way of displaying
the composition of a sequence. The information is displayed so
that interesting features can be noticed by eye.

7. Due to the correspondence between points on the CGR and
the sequence, any mathematical characterization of the CGR is
a characterization of the underlying sequence.

For example, it may be possible to find a technique for
producing a mathematical description of the CGR of a sequence,
using concepts from the IFS theory. If such a technique can be
found, it will be a technique for producing a description of the
DNA sequence.

As a result of these observations, we can say that in an intuitive
sense the CGR represents both statistical properties of frequencies
of bases as well as sequentiality properties— i.e., which bases
follow others, immediately or later in the gene.

Generally, about 4000 base pairs are necessary for a sharply
defined picture, although in many cases 2000 give a reasonably
good approximation. To date we have not observed any CGRs
in which the double scoop pattern appeared early, as the sequence
was plotted, and was then covered up by further dots. Further,
we have not found any cases in which one pattern began to
emerge and then changed, as further bases were plotted, to
another pattern. This seems to be significant, for it would indicate
that many features of the genetic sequence are exhibited by an
initial subsequence, and thus the examining the entire sequence
may add no new information.

In the next section we present Chaos Game Representations
of several different types of genes.

The CGR of Certain Groups of Genes

The key question, of course, about this or any other
representation, is whether it yields biologically interesting
observations. It appears at this point that it does. We have found
several distinctive patterns, by examininng the CGR of a number
of groups of genes. Using genetic sequence data from the
Genbank data base (Release 55), we have discovered some
characteristic patterns presented below.

Vertebrate CGRs

With two exceptions, every vertebrate sequence examined so far
exhibits the characteristic pattern of HUMHBB (Figure 3). This
pattern has not been found in any group other than vertebrates,
with the exception of certain viruses (such as the HIV viruses).
This is discussed below in the section on viral CGRs.

The results of Section 4 permit a partial characterization of
the double-scoop pattern of Figure 3. Examining the figure, there
is the general paucity of points in the cg-subquadrant, which
corresponds to a paucity of subsequences ending in ‘cg’.
However, the sparse area is more complex geometrically; it can
be decomposed into sub-sub-quadrants, etc., producing the
rounded bottom of the scoop. Each of these smaller sparse areas
corresponds to longer sparse suffixes. The paucity of one
particular suffix produces a square sparse area in the CGR (as
discussed below).

The characterization is partial in that we have as yet no
mathematical description of the scarce suffixes producing the
complex outline of the scoop.

The two exceptions mentioned are oncogenes and human



a.

Human c-Ha-ras 1
Proto-oncogene (complete)
(HUMRASH) (6,453 bases)

Figure 5. Oncogene CGRs.

ribosomal RNA. Oncogenes display an entirely different pattern,
discussed below in the section of oncogene CGRs. The CGR of
Human ribosomal RNA displays few distinctive features, although
it is clearly unlike the randomly filled-in square. It does reveal
a high density of c-g pairs, as shown by a densely filled-in c-g
line.

Oncogenes examined to date have exhibited two characteristic
patterns, shown in Figure 5.

Invertebrates

Invertebrate sequences in general exhibit less structure than those
of vertebrates, the CGR appearing to be almost an even
distribution of points.

Certain patterns are found, however, as in the nematode (C.
elegans) major myosin heavy chain isozyme unc-54 I gene
(CELMYUNC), which displays some clsutering and a diffuse
band of points along the a-g diagonal.

Plants and Slime Molds

Several distinct types of CGRs may be found in plants, none like
the vertebrate pattern. POTPATG, the solanum tuberosum gene
for patatin, shows horizontal striations, with a sparse area near
the upper portion of each striation, and a high density of points
on the a-u axis.

Many other plant sequences show little discernible pattern.
MZESUSYSG (Maize sucrose synthase, complete) and barley
aleurain gene (BLYALR) are good examples.

Yeast genes show a different characteristic pattern, in many
cases. It is more diffuse, although it displays a somewhat higher
density of points along the lower portion of the a-g diagonal.

A quite distinctive pattern, is exhibited by several of the slime
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Human (Lawn) c-myc
Proto-oncogene (complete)
(HUMMYCC) (8,082 bases)

Figure 6. D. Discoideum Myosin Heavy Chain Gene (complete) (SLMMYHC)
(6,680 bases).

mold sequences. That for SLMMYHC (D. discoideum myosin
heavy chain gene, complete) (Figure 6).

This pattern is also exhibited, for example, by SLMDIRS1A
(D. Discoideum transposon DIRS-1, complete).
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a.

Bacteriophage Lambda (LAM)
(23,650 bases)

Figure 7. Phage CGRs.

Phages
Phage CGRs display some visually striking patterns, as shown
in Figure 7.

Note, for example, the series of very sparsely populated squares
below the a-g diagonal in Fig. 7a, and the almost empty square
near the middle of Fig. 7b.

The square near the middle of Fig. 7b indicates the lack of
subsequences ending in ‘gatc’. As discussed in Section 4, every
‘gatc’ sequence produces a point in this square, and only ‘gatc’
sequences do. (And, in fact, there are exactly six ‘gatc’ sequences
in PT7, and six dots inside the square.)

Figure 7a contains a similar situation: a larger very sparse
square just below the a-g diagonal. This sparse sub-sub-quadrant
indicates a lack of ‘tag’ sequences in lambda. Note that the largest
sparse square is one-eighth the size of the entire CGR,
corresponding to a suffix of length 3, while the sparse square
in Fig. 7b is one- sixteenth the size of the CGR, corresponding
to a suffix of length 4.

Bacteria

The CGR for bacteria investigated to date are in general fairly
uniformly filled in, with the exception of a series of diffuse
sparsely filled squares below the a-g diagonal. No non-bacterial
sequences to date have shown this pattern. The CGR for
ECOUNCC (E. coli operon encoding 8 subunits of ATP) is
typical of this group.

Viruses

Viral CGRs show several well-defined patterns. Quite intriguing
is that displayed by the sequence for the human T-cell
lymphotropic virus (type II) (Figure 8). The double-scoop pattern
is quite evident, along with diagonal ‘striations’ along the a-g
axis. The pattern is similar to that of Fig. 3, but the sparse area

Bacteriophage T7 (complete)
(PT7) (39,936 bases)

Figure 8. Human T-cell Lymphotropic Virus (Type III) (complete) (HIVPV22)
(9,770 bases).

is a union of a smaller number of squares than that of Fig. 3,
indicating a simpler set of scarce sequences.

The same pattern is displayed by the CGR for HIVZ6 (human
immunodeficiency virus type 1), HIVBRUCG (human
lymphadenopathy-associated virus), HIVELICG (human



Figure 9. ‘Theory and Practice of Knowledge Engineering’ (12,508 bases).

lymphadenapthy virus), and HIV2ROD (human
immunodeficiency virus type 2), YFV (yellow fever), and HPA
(hepatitis).

Non-genetic Sequences
The CGR algorithm produces a CGR for any sequences of letters,

plotting ‘a’, ‘c’, ‘g’, and ‘t’ or ‘u’, while ignoring any other
intervening characters. This leaves open the question of whether
the CGRs we have observed, intriguing as they may seem, were
simply a mathematical oddity, displayed by any sequence of
letters. To investigate this possibility, we produced CGRs of
several text files, of this and previous papers.

English text files do in fact produce CGRs (rather than, for
example, simply the filled-in square), but they are unlike those
of any genetic sequence found to date.

Figure 9 is the CGR of a paper the author has previously
published on knowledge engineering.

Related Work

As iterated function systems are intimately related to non-linear
dynamics and chaos [1], there are number of connections to that
field. A. Mandell has used non-linear dynamics to analyze protein
structure [7] and coding problems [8]. A number of related papers
appear in [6].

The CGR involves treating a genetic sequence as an abstract
string of symbols. As such, symbolic dynamics is clearly relevant.
Symbolic dynamics [2], a topic in dynamical systems theory,
associates strings of symbols with orbits of a dynamical system.
It is a powerful tool for analyzing the orbits. It may be that this
approach can be reversed: we may be able to find dynamical
systems whose behavior is represented by a given DNA sequence.

Subshifts of finite type [2] may be relevant here, as they are
a technique for analyzing the orbits of systems under restrictions
as to which symbols can follow others. In most DNA sequences
any base may follow any other, but it may be that we can find
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subsequences (such as exons) for which this does not hold. In
such cases this approach may prove valuable.

Broadly, the CGR is a technique for studying the ‘non-
randomness’ of genetic sequences. Statistical analysis of DNA
sequences has been explored by a number of researchers; [10]
and [S] are good examples.

To date we have relied solely on visual characterization of the
patterns found in CGRs, both as to recognizing features and
judging similarity of features. An objective, mathematical
measure is needed. The pattern recognition literature reveals little
in the way of a formal definition or characterization of ‘pattern’
that is directly applicable. However, digital image enhancement
techniques are clearly applicable. The Hausdorff distance [1] has
been used to formalize similarity of patterns, and may well prove
valuable here.

Research into using particular sequences of numbers (or
symbols) to control the chaos game (which is the concept of the
CGR), and thereby analyze/characterize the sequences
themselves, would be highly relevant. No such other work has
been found. This appears to be a new area of study, in need of
further investigation.

Open Questions

Chaos Game Representation has revealed an entirely new set of
questions, most of which are unanswered at this pint. In this
section we present a representative sample. It is intended to be
provocative, rather than in any way complete.

The overall question of course is whether CGR can serve as
a useful tool for investigating DNA sequences, and if so in what
ways. The answer will depend in large measure on results
obtained in addressing these and other specific questions.

1. The patterns found so far appear to be biologically
meaningful, due to the 1—1 representation and to the fact that
observable patterns in CGRs vary across groups of genes. The
work on this topic, though, is just beginning. What correlations
are there between observable patterns and CGRs and biologically
interesting gene categories?

2. Mathematically characterize the sparse sequences that
produce the ‘double scoop’ pattern (Fig. 3), which to date has
been found only in non-oncogene vertebrate sequences and in
some genes from viruses that can infect vertebrates? A partial
answer is given in The GCR of Certain Groups of Genes, but
it seems likely that considerably more can be said, both
mathematically and biologically.

3. Since the double scoop is so common in vertebrate
sequences, what can we say about the points that appear within
the scoop—its sparse filling?

4. Can we find a mathematical representation of the CGR that
makes it easier to represent/recogize biologically interesting
groups of genes?

5. Suppose we calculate the successive points for each base,
but plot only those bases in exons. Thus, the shape and location
of the exons would be visible, without intron sequences ‘covering
them up’. What does this reveal?

6. The same question as 5, but rendering invisible all but the
introns. (This question is related to [10], in which the randomness
of introns is a focus of study.)

7. For any screen resolution, if the gene sequence is long
enough many areas of the CGR become completely filled in. This
suggests two possible enhancements. First divide the picture into
small areas, and color the area according to how many points
of the CGR appear in it. Second, plot three-dimensionally, where
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the third dimension represents frequency of a CGR point’s
occurrence.

8. (Proposed by P. Senapathy [11]). Suppose we simply color
exons differently from introns, or color each exon differently.
What then is revealed about the intron/exon structure in the gene?

9. It is possible to apply the CGR algorithm to the codons,
or to the amino acids they code for. However, doing so does
not yield visible patterns; starting with so many vertices yields
a figure almost randomly filled. However, additional techniques
may yield insight into the structure of the amino acid sequences
themselves. Three such that are under investigation are (1) Using
four vertices, as with base CGRs, but plotting four acids per
CGR; (2) Representing the number of the acid in numerical base
4, so that, for example, amino acid 18 is represented as the string
of base-3 digits “20’. Any codon (or amino acid) would thus have
a representation using only 4 distinct digits, and we could
therefore apply the CGR algorithm to it; (3) Use one vertex per
codon, but use the IFS code that tiles the polygon with copies
of itself (as the IFS code for the square tiles the square with copies
of itself).

In addition to these questions, several extensions to the
technique suggest themselves, such as comparison of CGRs,
displaying only the points in common (or not in common) between
several CGRs. These may of course lead to further open questions
themselves.
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