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Abstract—A new signature scheme is proposed, together with an 
implementation of the Diffie-Hellman key distribution scheme that 
achieves a public key cryptosystem. The security of both systems relies on 
the difficulty of computing discrete logarithms over finite fields. 

I.    INTRODUCTION 

N 1975, Diffie and Hellman [3] introduced the concept 
of public key cryptography. Since then, several attempts 

have been made to find practical public key systems (see, 
for example, [6], [7], [9]) depending on the difficulty of 
solving some problems. For example, the RivesShamir-
Adleman (RSA) system [9] depends on the difficulty of 
factoring large integers. This paper presents systems that 
rely on the difficulty of computing logarithms over finite 
fields. 
 Section II shows a way to implement the public key 
distribution scheme introduced by Diffie and Hellman [3] 
to encrypt and decrypt messages. The security of this 
system is equivalent to that of the distribution scheme. 
Section III introduces a new digital signature scheme that 
depends on the difficulty of computing discrete logarithms 
over finite fields. It is not yet proved that breaking the 
system is equivalent to computing discrete logarithms. Sec-
tion IV develops some attacks on the signature scheme, 
none of which seems to break it. Section V gives some 
properties of the system. Section VI contains a conclusion 
and some remarks.  

II.    THE PUBLIC KEY SYSTEM 

First, the Diffie-Hellman key distribution scheme is 
reviewed. Suppose that A and B want to share a secret KAB,
where A has a secret xA and B has a secret xB. Let p be a 
large prime and α be a primitive element mod p, both 
known. A computes py Ax

A modα≡ , and sends Ay . Simi-
larly, B computes py Bx

B modα≡ and sends By . Then the 
secret KAB is computed as 
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Hence both A and B are able to computer KAB. But, for an 
intruder, computing KAB appears to be difficult. It is not yet 
proved that breaking the system is equivalent to computing 
discrete logarithms. For more details refer to [3]. 
 In any of the cryptographic systems based on discrete 
logarithms, p must be chosen such that p - 1 has at least one 
large prime factor. If p - 1 has only small prime factors, 
then computing discrete logarithms is easy (see [8]).  
 Now suppose that A wants to send B a message m, where 
0 ≤ m ≤ p - 1. First A chooses a number k uniformly 
between 0 and p - 1. Note that k will serve as the secret xA

in the key distribution scheme. Then A computes the “key” 
 ,mod pyK k

B≡ (1) 
where py Bx

B modα≡ is either in a public file or is sent by 
B. The encrypted message (or ciphertext) is then the pair 
(c1, c2), where 

 pKmcpc k modmod 21 ≡≡α (2) 
and K is computed in (1). 
 Note that the size of the ciphertext is double the size of 
the message. Also note that the multiplication operation in 
(2) can be replaced by any other invertible operation such 
as addition mod p.

The decryption operation splits into two parts. The first 
step is recovering K, which is easy for B since K ≡ ( ) Bxkα
≡ Bxc1 mod p, and xB is known to B only. The second step is 
to divide c2 by K and recover the message m.

The public file consists of one entry for each user, 
namely yi for user i (since α and p are known for all users). 
It is possible that each user chooses his own α and p, which 
is preferable from the security point of view although that 
will triple the size of the public file. 
 It is not advisable to use the same value k for enciphering 
more than one block of the message, since if k is used more 
than once, knowledge of one block m1 of the message 
enabled an intruder to computer other blocks as follows. 
Let 
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Then m1/m2 ≡ c2,1/c2,2 mod p, and m2 is easily computed if 
m1 is known. 
 Breaking the system is equivalent to breaking the 
Diffie-Hellman distribution scheme. First, if m can be 
computed from c1, c2, and y, then K can also be computed 
from y, c1, and c2 (which appears like a random 
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number since k and m are unknown). That is equivalent to 
breaking the distribution scheme. Second, (even if m is 
known) computing k or x from c1, c2, and y is equivalent to 
computing discrete logarithms. The reason is that both x
and k appear in the exponent in y and c1.

III.    A DIGITAL SIGNATURE SCHEME 

A new signature scheme is described in this section. The 
public file contains the same public keys for encrypting 
messages as well as verifying signatures. 
 Let m be a document to be signed, where 0 ≤ m ≤ p - 1. 
The public file still consists of the public key y ≡ αx mod p
for each user. To sign a document, a user A should be able 
to use the secret key xA to find a signature for m in such a 
way that all users can verify the authenticity of the 
signature by using the public key yA (together with α and 
p), and no one can forge a signature without knowing the 
secret xA.

The signature for m is the pair (r, s), 0 ≤ r, s < p - 1, 
chosen such that the equation 
 pry srm mod≡α (3) 
is satisfied. 

A. The Signing Procedure 

 The signing procedure consists of the following three 
steps. 
 1) Choose a random number k, uniformly between 0 and 
p - 1, such that gcd(k, p - 1) = 1. 
 2) Compute 
 pr k modα≡ . (4) 
 3) Now (3) can be written as 
 pksxrm modααα ≡ , (5) 
which can be solved for s by using  
 ( )1mod −+≡ pksxrm . (6) 
Equation (6) has a solution for s if k is chosen such that 
gcd(k, p - 1) = 1. 

B. The Verification Procedure 

 Given m, r, an s, it is easy to verify the authenticity of 
the signature by computing both sides of (3) and checking 
that they are equal.  
 Note 1: As will be shown in Section IV, the value of k
chosen in step 1) should never be used more than once. 
This can be guaranteed, for example, by using as a 
“k generator” a DES chip used in the counter mode as a 
stream cipher.  

IV.    SOME ATTACKS ON THE SIGNATURE SCHEME 

This section introduces some of the possible attacks on 
the signature scheme. Some of these attacks are easily 
shown to be equivalent to computing discrete logarithms 
over GF(p). It has not yet been proved that breaking the 
signature scheme is equivalent to computing discrete loga- 

rithms, or equivalent to breaking the distribution scheme. 
However, none of the attacks shown in this section appear 
to break the system. The reader is encouraged to develop 
new attacks, or find fast algorithms to perform one of the 
attacks described in this section. The attacks will be 
divided into two groups. The first group includes some 
attacks for recovering the secret key x, and in the second 
group we show some attacks for forging signatures without 
recovering x.

A. Attacks Aiming to Recover x 

 Attack 1: Given {mi: i = 1, 2, ..l} documents, together 
with the corresponding signatures {(ri, si): i = 1, 2, …,l}, an 
intruder may try to solve l equations of the form (6). Since 
there are l + 1 unknowns (since each signature uses a 
different k), the system of equations is underdetermined 
and the number of solutions is large. The reason is that 
each value for x yields a solution for the ki since a system 
of linear equations with a diagonal matrix of coefficients 
will result. Since p - 1 is chosen to have at least one large 
prime factor q, recovering x mod q requires an exponential 
number of message-signature pairs. 
 Note 2: If any k is used twice in the signing, then the 
system of equations is uniquely determined and x can be 
recovered. So for the system to be secure, any value of k
should never be used twice. 
 Attack 2: Trying to solve equations of the form (3) is 
always equivalent to computing discrete logarithms over 
GF(p), since both unknowns x and k appear in the 
exponent. 
 Attack 3: An intruder might try to develop some linear 
dependencies among the unknowns {ki, i = 1, 2, …, l}. This 
is also equivalent to computing discrete logarithms since if 
ki ≡ ckj mod (p - 1), then prr c

ji mod≡ , and if c can be 
computed then computing discrete logarithms is easy. 

B. Attacks for Forging Signatures 

 Attack 4: Given a document m, a forger may try to find 
r, s such that (3) is satisfied. If r ≡ αj mod p is fixed for 
some j chosen at random, then computing s is equivalent to 
solving a discrete logarithm problem over GF(p). 
 If the forger fixes s first, then r could be computed from 
the equation 
 pAyr rs mod≡ . (7) 
Solving equation (7) for r is not yet proved to be at least as 
hard as computing discrete logarithms, but we believe that 
is it not feasible to solve (7) in polynomial time. The reader 
is encouraged to find a polynomial time algorithm for 
solving (7). 
 Attack 5: It seems possible that (3) can be solved for both 
r and s simultaneously, but we have not been able to find 
an efficient algorithms to do that. 
 Attack 6: The signature scheme allows the following 
attack, whereby the intruder, knowing one legitimate sig-
nature for one message, can generate other legitimate sig-
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natures and messages. This attack does not allow the 
intruder to sign an arbitrary message and therefore does not 
break the system. This property exists in all the existing 
digital signature schemes and can be avoided by either 
requiring that m has to have a certain structure or by 
applying a one-way function to the message m before 
signing it. 
 Given a signature (r, s) for the message (m), then 
 pry srm mod=α .
Select integers A, B, and C arbitrarily such that (Ar – Cs) is 
relatively prime to p - 1. Set 
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Then it is claimed that (r′, s′) signs the message (m′).  
Calculate 
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(all calculations mod p). 
 As a special case, setting A = 0, legitimate signatures can 
be generated with corresponding messages without ever 
seeing any signatures: 
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It can be shown that (r′, s′) signs (m′). 

V.    PROPERTIES OF OUR SYSTEM AND COMPARISON 
TO OTHER SIGNATURE SCHEMES AND 

PUBLIC KEY SYSTEMS 

Let m be the number of bits in either p for the discrete 
logarithm problem or n for the integer factoring problem. 
Then the best known algorithm for both computing discrete 
logarithms and factoring integers (which is the function 
used in some of the existing systems such as the RSA 
system [9]) is given by (see [1], [5], [10]) 
 ( ),lnexp mcmO (8) 
where the best estimate for c is c = 0.69 for factoring 
integers (due to Schnorr and Lenstra [10]), as well as for 
discrete logarithms over GF(p) (see [5]). These estimates 
imply that we have to use numbers that are about the size of 
the numbers used in the RSA system in order to obtain the 
same level of security (assuming the current value for c for 
both the discrete logarithms problem and the integer 
factorization problem). So the size of the public file is 
larger than that for the RSA system. (For the RSA system, 

each user has one entry n as his public key, together with 
the encryption key in the public file.) 

A. Properties of the Public Key System 

 As shown above, our system differs from the other 
known systems. First, due to the randomization in the 
enciphering operation, the cipher text for a given message 
m is not repeated, i.e., if we encipher the same message 
twice, we will not get the same cipher text {c1, c2}. This 
prevents attacks like a probable text attack where if the 
intruder suspects that the plain text is, for example, m, then 
he tries to encipher m and finds out if it was really m. This 
attack, and similar ones, will not succeed since the original 
sender chose a random number k for enciphering, and 
different values of k will yield different values of {c1, c2}. 
Also, due to the structure of our system, there is no obvious 
relation between the enciphering of m1, m2, and m1m2, or 
any other simple function of m1 and m2. This is not the case 
for the known systems, such as the RSA system. 
 Suppose that p is of about the same size as that required 
for n in the case of the RSA system. Then the size of the 
cipher text is double the size of the corresponding RSA 
cipher text. 
 For the enciphering operation, two exponentiations are 
required. That is equivalent to about 2 log p multiplications 
in GF(p). For the deciphering operation only one 
exponentiation (plus one division) is needed. 

B. Properties of the Signature Scheme 

 For the signature scheme using the above arguments for 
the sizes of the numbers in our system and the RSA system, 
the signature is double the size of the document. Then the 
size of the signature is the same size as that needed for the 
RSA scheme, and half the size of the signature for the new 
signature scheme that depends on quadratic forms 
published by Ong and Schnorr [6], and also Ong, Schnorr, 
and Shamir [7] (since both systems are based on the integer 
factoring problem). The Ong-Schnorr-Shamir system has 
been broken by Pollard and new variations are being 
suggested. Thus, it is not clear at the present time whether a 
secure system based on modular equations can be found, 
and hence no further remarks will be make regarding these 
schemes. 
 Note that, since the number of signatures is p2, while the 
number of documents is only p, each document m has a lot 
of signatures but any signature signs only one document.  
 For the signing procedure, one exponentiation (plus a 
few multiplications) is needed. To verify a signature, it 
seems that three exponentiations are needed, but it was 
pointed to the author by Shamir that only 1.875 exponenti-
ations are needed. This is done by representing the three 
exponents m, r, s in their binary expansion. At each step 
square the number α-1yr and divide by the necessary
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factor to account for the different expansions of m, r, and s.
The different multiples of α-1, y, and r can be stored in a 
table consisting of eight entries. We expect that 0.875 of 
the time a multiplication is needed. That accounts for the 
1.875 exponentiations needed. 

VI.    CONCLUSIONS AND REMARKS 

The paper described a public key cryptosystem and a 
signature scheme based on the difficulty of computing 
discrete logarithms over finite fields. The systems are only 
described in GF(p). The public key system can be easily 
extended to any GF(pm), but recent progress in computing 
discrete logarithms over GF(pm) where m is large (see 
[2,5]) makes the key size required very large for the system 
to be secure. The subexponential time algorithm has been 
extended to GF(p²) [4] and it appears that it can be 
extended to all finite fields, but the estimates for the 
running time for the fields GF(pm) with a small m seem 
better at the present time. Hence, it seems that it is better to 
use GF(pm) with m = 3 or 4 for implementing a 
cryptographic system. The estimates for the running time of 
computing discrete logarithms and for factoring integers 
are the best known so far, and if the estimates remain the 
same, then, for the same security level, the size of the 
public key file and the size of cipher text will be double the 
size of those for the RSA system.  
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