
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-31, NO. 4, JULY 1985

0018-9448/85/0700-0469$01.00 ©1985 IEEE

A Public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms

TAHER ELGAMAL, MEMBER, IEEE

Abstract—A new signature scheme is proposed, together with an
implementation of the Diffie-Hellman key distribution scheme that
achieves a public key cryptosystem. The security of both systems relies on
the difficulty of computing discrete logarithms over finite fields.

I. INTRODUCTION

N 1975, Diffie and Hellman [3] introduced the concept
of public key cryptography. Since then, several attempts

have been made to find practical public key systems (see,
for example, [6], [7], [9]) depending on the difficulty of
solving some problems. For example, the RivesShamir-
Adleman (RSA) system [9] depends on the difficulty of
factoring large integers. This paper presents systems that
rely on the difficulty of computing logarithms over finite
fields.
 Section II shows a way to implement the public key
distribution scheme introduced by Diffie and Hellman [3]
to encrypt and decrypt messages. The security of this
system is equivalent to that of the distribution scheme.
Section III introduces a new digital signature scheme that
depends on the difficulty of computing discrete logarithms
over finite fields. It is not yet proved that breaking the
system is equivalent to computing discrete logarithms. Sec-
tion IV develops some attacks on the signature scheme,
none of which seems to break it. Section V gives some
properties of the system. Section VI contains a conclusion
and some remarks.

II. THE PUBLIC KEY SYSTEM

First, the Diffie-Hellman key distribution scheme is
reviewed. Suppose that A and B want to share a secret KAB,
where A has a secret xA and B has a secret xB. Let p be a
large prime and α be a primitive element mod p, both
known. A computes py Ax

A modα≡ , and sends Ay . Simi-
larly, B computes py Bx

B modα≡ and sends By . Then the
secret KAB is computed as

 .mod
mod

mod

py
py

pK

A

B

BA

x
B

x
A

xx
AB

≡
≡
≡α

Hence both A and B are able to computer KAB. But, for an
intruder, computing KAB appears to be difficult. It is not yet
proved that breaking the system is equivalent to computing
discrete logarithms. For more details refer to [3].
 In any of the cryptographic systems based on discrete
logarithms, p must be chosen such that p - 1 has at least one
large prime factor. If p - 1 has only small prime factors,
then computing discrete logarithms is easy (see [8]).
 Now suppose that A wants to send B a message m, where
0 ≤ m ≤ p - 1. First A chooses a number k uniformly
between 0 and p - 1. Note that k will serve as the secret xA

in the key distribution scheme. Then A computes the “key”
 ,mod pyK k

B≡ (1)
where py Bx

B modα≡ is either in a public file or is sent by
B. The encrypted message (or ciphertext) is then the pair
(c1, c2), where

 pKmcpc k modmod 21 ≡≡α (2)
and K is computed in (1).
 Note that the size of the ciphertext is double the size of
the message. Also note that the multiplication operation in
(2) can be replaced by any other invertible operation such
as addition mod p.

The decryption operation splits into two parts. The first
step is recovering K, which is easy for B since K ≡ () Bxkα
≡ Bxc1 mod p, and xB is known to B only. The second step is
to divide c2 by K and recover the message m.

The public file consists of one entry for each user,
namely yi for user i (since α and p are known for all users).
It is possible that each user chooses his own α and p, which
is preferable from the security point of view although that
will triple the size of the public file.
 It is not advisable to use the same value k for enciphering
more than one block of the message, since if k is used more
than once, knowledge of one block m1 of the message
enabled an intruder to computer other blocks as follows.
Let

 .modmod
,modmod

22,22,1

11,21,1
pKmcpc
pKmcpc

k

k

≡≡
≡≡

α
α

Then m1/m2 ≡ c2,1/c2,2 mod p, and m2 is easily computed if
m1 is known.
 Breaking the system is equivalent to breaking the
Diffie-Hellman distribution scheme. First, if m can be
computed from c1, c2, and y, then K can also be computed
from y, c1, and c2 (which appears like a random

I

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-31, NO. 4, JULY 1985

number since k and m are unknown). That is equivalent to
breaking the distribution scheme. Second, (even if m is
known) computing k or x from c1, c2, and y is equivalent to
computing discrete logarithms. The reason is that both x
and k appear in the exponent in y and c1.

III. A DIGITAL SIGNATURE SCHEME

A new signature scheme is described in this section. The
public file contains the same public keys for encrypting
messages as well as verifying signatures.
 Let m be a document to be signed, where 0 ≤ m ≤ p - 1.
The public file still consists of the public key y ≡ αx mod p
for each user. To sign a document, a user A should be able
to use the secret key xA to find a signature for m in such a
way that all users can verify the authenticity of the
signature by using the public key yA (together with α and
p), and no one can forge a signature without knowing the
secret xA.

The signature for m is the pair (r, s), 0 ≤ r, s < p - 1,
chosen such that the equation
 pry srm mod≡α (3)
is satisfied.

A. The Signing Procedure

 The signing procedure consists of the following three
steps.
 1) Choose a random number k, uniformly between 0 and
p - 1, such that gcd(k, p - 1) = 1.
 2) Compute
 pr k modα≡ . (4)
 3) Now (3) can be written as
 pksxrm modααα ≡ , (5)
which can be solved for s by using
 ()1mod −+≡ pksxrm . (6)
Equation (6) has a solution for s if k is chosen such that
gcd(k, p - 1) = 1.

B. The Verification Procedure

 Given m, r, an s, it is easy to verify the authenticity of
the signature by computing both sides of (3) and checking
that they are equal.
 Note 1: As will be shown in Section IV, the value of k
chosen in step 1) should never be used more than once.
This can be guaranteed, for example, by using as a
“k generator” a DES chip used in the counter mode as a
stream cipher.

IV. SOME ATTACKS ON THE SIGNATURE SCHEME

This section introduces some of the possible attacks on
the signature scheme. Some of these attacks are easily
shown to be equivalent to computing discrete logarithms
over GF(p). It has not yet been proved that breaking the
signature scheme is equivalent to computing discrete loga-

rithms, or equivalent to breaking the distribution scheme.
However, none of the attacks shown in this section appear
to break the system. The reader is encouraged to develop
new attacks, or find fast algorithms to perform one of the
attacks described in this section. The attacks will be
divided into two groups. The first group includes some
attacks for recovering the secret key x, and in the second
group we show some attacks for forging signatures without
recovering x.

A. Attacks Aiming to Recover x

 Attack 1: Given {mi: i = 1, 2, ..l} documents, together
with the corresponding signatures {(ri, si): i = 1, 2, …,l}, an
intruder may try to solve l equations of the form (6). Since
there are l + 1 unknowns (since each signature uses a
different k), the system of equations is underdetermined
and the number of solutions is large. The reason is that
each value for x yields a solution for the ki since a system
of linear equations with a diagonal matrix of coefficients
will result. Since p - 1 is chosen to have at least one large
prime factor q, recovering x mod q requires an exponential
number of message-signature pairs.
 Note 2: If any k is used twice in the signing, then the
system of equations is uniquely determined and x can be
recovered. So for the system to be secure, any value of k
should never be used twice.
 Attack 2: Trying to solve equations of the form (3) is
always equivalent to computing discrete logarithms over
GF(p), since both unknowns x and k appear in the
exponent.
 Attack 3: An intruder might try to develop some linear
dependencies among the unknowns {ki, i = 1, 2, …, l}. This
is also equivalent to computing discrete logarithms since if
ki ≡ ckj mod (p - 1), then prr c

ji mod≡ , and if c can be
computed then computing discrete logarithms is easy.

B. Attacks for Forging Signatures

 Attack 4: Given a document m, a forger may try to find
r, s such that (3) is satisfied. If r ≡ αj mod p is fixed for
some j chosen at random, then computing s is equivalent to
solving a discrete logarithm problem over GF(p).
 If the forger fixes s first, then r could be computed from
the equation
 pAyr rs mod≡ . (7)
Solving equation (7) for r is not yet proved to be at least as
hard as computing discrete logarithms, but we believe that
is it not feasible to solve (7) in polynomial time. The reader
is encouraged to find a polynomial time algorithm for
solving (7).
 Attack 5: It seems possible that (3) can be solved for both
r and s simultaneously, but we have not been able to find
an efficient algorithms to do that.
 Attack 6: The signature scheme allows the following
attack, whereby the intruder, knowing one legitimate sig-
nature for one message, can generate other legitimate sig-

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-31, NO. 4, JULY 1985

natures and messages. This attack does not allow the
intruder to sign an arbitrary message and therefore does not
break the system. This property exists in all the existing
digital signature schemes and can be avoided by either
requiring that m has to have a certain structure or by
applying a one-way function to the message m before
signing it.
 Given a signature (r, s) for the message (m), then
 pry srm mod=α .
Select integers A, B, and C arbitrarily such that (Ar – Cs) is
relatively prime to p - 1. Set

).1(mod)()(

),1(mod)(
,mod

−−+′≡′
−−′≡′

≡′

pCsArBsAmrm
pCsArrss

pyrr CBAα

Then it is claimed that (r′, s′) signs the message (m′).
Calculate

()
()
()
m

CsArrBsrmA

CsAr
rBsrAsr

CsArrBsrAsCsrCsrArr

CsArrsCBArsr

ry

ry
yryry

′

−′+′

−
′′

−′′′+′−′

−′′′′

≡
≡






≡

≡

≡′

α
α

α

α
α

)()(

)(1

)(1

)(

(all calculations mod p).
 As a special case, setting A = 0, legitimate signatures can
be generated with corresponding messages without ever
seeing any signatures:

).1(mod

)1(mod
,mod

−′−≡′
−′−≡′

≡′

pCBrm
pCrs

pyr CBα

It can be shown that (r′, s′) signs (m′).

V. PROPERTIES OF OUR SYSTEM AND COMPARISON
TO OTHER SIGNATURE SCHEMES AND

PUBLIC KEY SYSTEMS

Let m be the number of bits in either p for the discrete
logarithm problem or n for the integer factoring problem.
Then the best known algorithm for both computing discrete
logarithms and factoring integers (which is the function
used in some of the existing systems such as the RSA
system [9]) is given by (see [1], [5], [10])
 (),lnexp mcmO (8)
where the best estimate for c is c = 0.69 for factoring
integers (due to Schnorr and Lenstra [10]), as well as for
discrete logarithms over GF(p) (see [5]). These estimates
imply that we have to use numbers that are about the size of
the numbers used in the RSA system in order to obtain the
same level of security (assuming the current value for c for
both the discrete logarithms problem and the integer
factorization problem). So the size of the public file is
larger than that for the RSA system. (For the RSA system,

each user has one entry n as his public key, together with
the encryption key in the public file.)

A. Properties of the Public Key System

 As shown above, our system differs from the other
known systems. First, due to the randomization in the
enciphering operation, the cipher text for a given message
m is not repeated, i.e., if we encipher the same message
twice, we will not get the same cipher text {c1, c2}. This
prevents attacks like a probable text attack where if the
intruder suspects that the plain text is, for example, m, then
he tries to encipher m and finds out if it was really m. This
attack, and similar ones, will not succeed since the original
sender chose a random number k for enciphering, and
different values of k will yield different values of {c1, c2}.
Also, due to the structure of our system, there is no obvious
relation between the enciphering of m1, m2, and m1m2, or
any other simple function of m1 and m2. This is not the case
for the known systems, such as the RSA system.
 Suppose that p is of about the same size as that required
for n in the case of the RSA system. Then the size of the
cipher text is double the size of the corresponding RSA
cipher text.
 For the enciphering operation, two exponentiations are
required. That is equivalent to about 2 log p multiplications
in GF(p). For the deciphering operation only one
exponentiation (plus one division) is needed.

B. Properties of the Signature Scheme

 For the signature scheme using the above arguments for
the sizes of the numbers in our system and the RSA system,
the signature is double the size of the document. Then the
size of the signature is the same size as that needed for the
RSA scheme, and half the size of the signature for the new
signature scheme that depends on quadratic forms
published by Ong and Schnorr [6], and also Ong, Schnorr,
and Shamir [7] (since both systems are based on the integer
factoring problem). The Ong-Schnorr-Shamir system has
been broken by Pollard and new variations are being
suggested. Thus, it is not clear at the present time whether a
secure system based on modular equations can be found,
and hence no further remarks will be make regarding these
schemes.
 Note that, since the number of signatures is p2, while the
number of documents is only p, each document m has a lot
of signatures but any signature signs only one document.
 For the signing procedure, one exponentiation (plus a
few multiplications) is needed. To verify a signature, it
seems that three exponentiations are needed, but it was
pointed to the author by Shamir that only 1.875 exponenti-
ations are needed. This is done by representing the three
exponents m, r, s in their binary expansion. At each step
square the number α-1yr and divide by the necessary

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-31, NO. 4, JULY 1985

factor to account for the different expansions of m, r, and s.
The different multiples of α-1, y, and r can be stored in a
table consisting of eight entries. We expect that 0.875 of
the time a multiplication is needed. That accounts for the
1.875 exponentiations needed.

VI. CONCLUSIONS AND REMARKS

The paper described a public key cryptosystem and a
signature scheme based on the difficulty of computing
discrete logarithms over finite fields. The systems are only
described in GF(p). The public key system can be easily
extended to any GF(pm), but recent progress in computing
discrete logarithms over GF(pm) where m is large (see
[2,5]) makes the key size required very large for the system
to be secure. The subexponential time algorithm has been
extended to GF(p²) [4] and it appears that it can be
extended to all finite fields, but the estimates for the
running time for the fields GF(pm) with a small m seem
better at the present time. Hence, it seems that it is better to
use GF(pm) with m = 3 or 4 for implementing a
cryptographic system. The estimates for the running time of
computing discrete logarithms and for factoring integers
are the best known so far, and if the estimates remain the
same, then, for the same security level, the size of the
public key file and the size of cipher text will be double the
size of those for the RSA system.

ACKNOWLEDGEMENT

The author would like to thank a referee for including
Attack 6 described in Section IV.

REFERENCES
[1] L. Adleman, “A subexponential algorithm for the discrete logarithm

problem with applications to cryptography,” in Proc. 20th IEEE symp.
Foundations of Computer Science 1979, pp. 55-60.

 [2] D. Coppersmith, “Fast evaluation of logarithms in fields of characteristic
two,” IEEE Trans. Inform. Theory, vol. IT-30. pp. 587-594, 1984.

 [3] W. Diffie and M. Hellman, “New directions in cryptography.” IEEE
Trans. Inform. Theory, vol. IT-22, pp. 472-492, 1976.

 [4] T. ElGamal, “A subexponential-time algorithm for computing discrete
logarithms over GF(p2),” IEEE Trans. Inform. Theory, this issue.

 [5] A Odlyzko, “Discrete logarithms in finite fields and their cryptographic
significance,” Proc. Eurocrypt 84, to appear.

 [6] H. Ong and C. Schnorr, “Signatures through approximate representations
by quadratic forms,” to appear.

 [7] H. Ong, C. Schnorr, and A. Shamir, “An efficient signature scheme based
on quadratic forms,” in Proc. 16th ACM Symp. Theoretical Computer
Science, 1984, pp. 208-216.

 [8] S. Pohlig and M. Hellman, “An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance,” IEEE Trans.
Inform. Theory, volume. IT-24, pp. 106-110, 1978.

 [9] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public key cryptosystems,” Commum. ACM, vol. 21, no. 2,
pp. 120-126, Feb. 1978.

 [10] C. Schnorr and H. W. Lenstra Jr., “A Monte Carlo factoring algorithm
with finite storage,” Math. Comput., vol. 43, pp. 289-311, 1984.

