

02 - Introduction

Security (of) softwares

Thibaut HENIN www.arsouyes.org

What is Software Security?

What is software Vulnerability?

Software vulnerability definition

A defect

that allows

unauthorized actions

Software engineering How we turn dreams into reality

What we wants What we get

Specifications

Bugs

Software Security

How we turn nightmares into reality

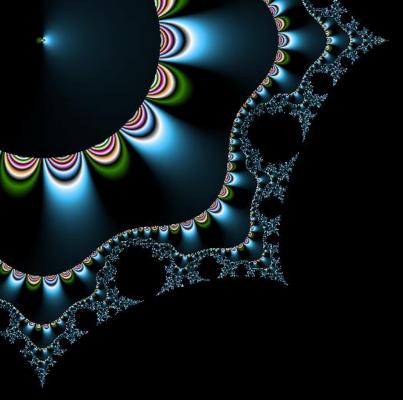
What we wants

What we get

Security Policy

Vulnerabilities

Two families


i.e. ISO-27000 : 2005 versus 2013

Check Lists

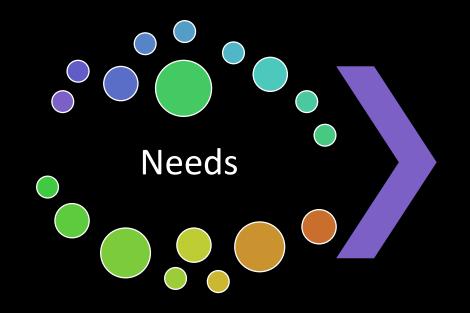
i.e. PCI-DSS, ISO-21434 (road vehicles), mehari,...

Risk Analysis

i.e. Common Criteria (ISO-15408), CSPN, EBIOS,...

CSPN

Short Introduction


Simplification of Common Criteria i.e. ISO-27000 in 2005 or 2013

	Common Criteria	CSPN
Perimeter	Everything involved	Software only
Workload	No limit	30 days of work
Recognition	World Wide	Made in France

CSPN Two phases

Audit

What we wants

What we get

Security Target Security Evaluation

Security Target (from risk management)

Assets Property Criticity Measures

Step 0 – the product Who it is

Identification

(name, version, editor, ...)

Description

(features / use cases, users, prerequisites, ...)

Step 0 – the product Example

Organisation: Speed-e-dev

Product: Speed-e-blog

Version number : 2.0

Category: miscelaneous

Step 1 - Assets Definition

A resource

(information, data, hardware, functionnality, ...)

That need to be protected

(against malicious agent)

Step 1 - Assets Example

Business assets

Support assets

A1 - Articles

A2 - Nicknames

A3 - Web browsers

A4 - Passwords

A5 - Files — configuration

A6 – Files – source code

A7 - Servers

Step 2 - Security Properties Three main ones

Confidentiality

(only authorized agend can read)

Integrity

(only authorized agent can write)

Availability

(asset can be accessed)

Step 2 - Security Properties Other usefull ones

Authenticity

(the resource is the one that have been sent)

Traceability

(access are recorded on a log)

Non repudiation

(nobody can say « it's not me » or « it's someone else »)

Step 2 - Coverage matrix Assets and properties

Assets	Confidentiality	Availability	Integrity
A1 - Articles			✓
A2 - Nicknames			✓
A3 - Web browsers	✓		✓
A4 - Passwords	✓		✓
A5 - Files - configuration	✓		✓
A6 - Files – source code			√
A7 - Servers	√		√

Step 3 – Threats Definition

Feared event

(what wrong can happen)

Step 3 – Threats Example

- *T1 Fraudulent modification of article*
- *T2 Execution on browser*
- T3 Fraudulent deletion of article
- *T4 Impersonation of writers*
- T5 Password theft
- *T6 Theft of account*
- T7 Fraudulent access to files
- *T8 Fraudulent modification of files*
- *T9 Execution on server*

Step 3 – Coverage matrix

Assets by threats

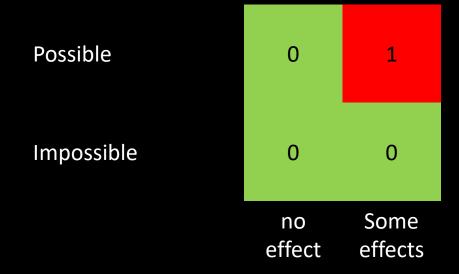
Threats	A1 Articles	A2 Nicknames	A3 Browsers	A4	Passwords	A5 Files	Config	A6 Files Source code	A7	Servers
	_	_	O –	C	_	ပ	_	_	O	_
T1 - Modification article	√	✓								
T2 - Execution, browser	√	✓	✓ ✓							
T3 - Deletion article	√	✓			√					
T4 - Impersonation	√	✓								
T5 - Password theft	√	✓		√						
T6 - Account theft	√	✓			√					
T7 - File access				√		√			\checkmark	
T8 - File changes	√	✓	√ ✓	√	√	√	√	\checkmark	\checkmark	\checkmark
T9 - Execution, server	√	√	√ √	√	\checkmark	\checkmark	√	√	\checkmark	√

Step 4 — Criticity (optionnal) Product of two parameters

Severity - Consequences on the asset

e.g. if articles are defaced, the branding of the editor is hurt

Probability - Ease of the threat


e.g. access to writers' password database

Step 4 — Criticity Visually

Not expected	no	2 It	3 Low	4 High
	1	2	2	4
May occurs	2	4	6	8
Probable	3	6	9	12
For sure	4	8	12	16

Step 4 – Criticity (simplification)

For software (since we use booleans)

Step 5 - Measures a.k.a. security function / security features

Things to mitigate the risks

Eg. Access control, backups, updates, training, monitoring, ...

Step 5 - Coverage matrix Threats by measures

Mesure	Article modification	Password theft	Execution on server
Authentication & access control	✓		
Secure storage of password		✓	
Input data filtering			✓

Step 5b - Residual risks Value after measure take effects

Mesure	New Probability	New Severity	New Risk
Article modification → Access control	1 → 0	1	1 → 0
Password theft → Secure storage	1	1 → 0	1 → 0
Execution on server → Input filtering	1 → 0	1	1 → 0

Security Target Definition

Document that tells:

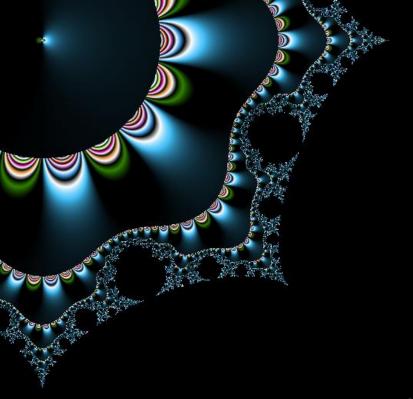
« This is how this software claims to be secure »

(all previous content)

Security Policy Definition

Document that tells:

« How we claims to be secure »


(same but for everything beyond software)

Security Audit Definition

So what is a software vulnerability?

Vulnerability

Bypass of Security Policy

Birth of vulnerabilities

Why are they so common?

By Negligence

« Don't touch what works »

By Conservatism

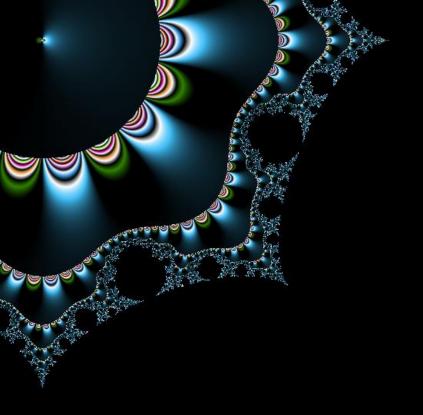
« We've always done that way! »

Technical debt

« It takes to much time to do it properly »

« We'll fix it later »

By Incompetence


« I didn't know »

Out of laziness

« It's too booooooring »

The error is human

« Oups, I didn't notice »

Discoveries

By whom? Why and How?

It's a job Rather twice than once

Security Audit

Planned for certification

Selling your time

By editor, user or agency

Bug Hunting

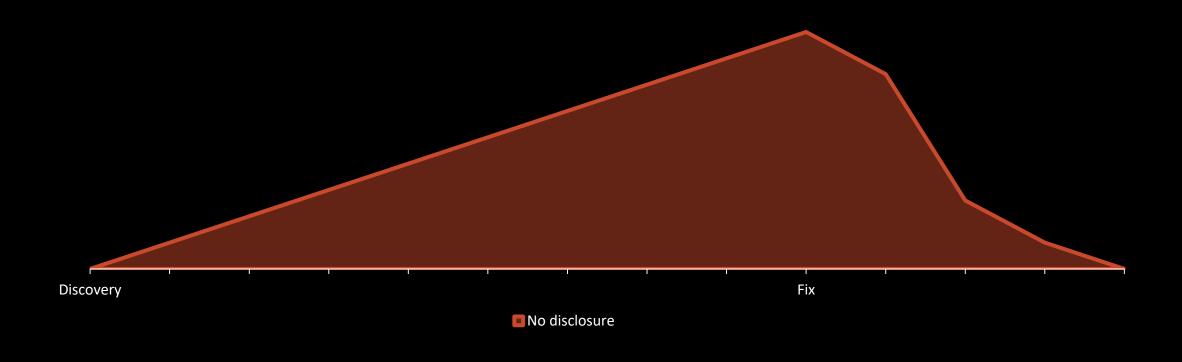
Opportunistic discoveries (unplanned)

Selling vulnerabilities

To editors (bounties), agencies or mafia

No Disclosure Keep it secret

Avoid wild exploitation


(minimize damages)

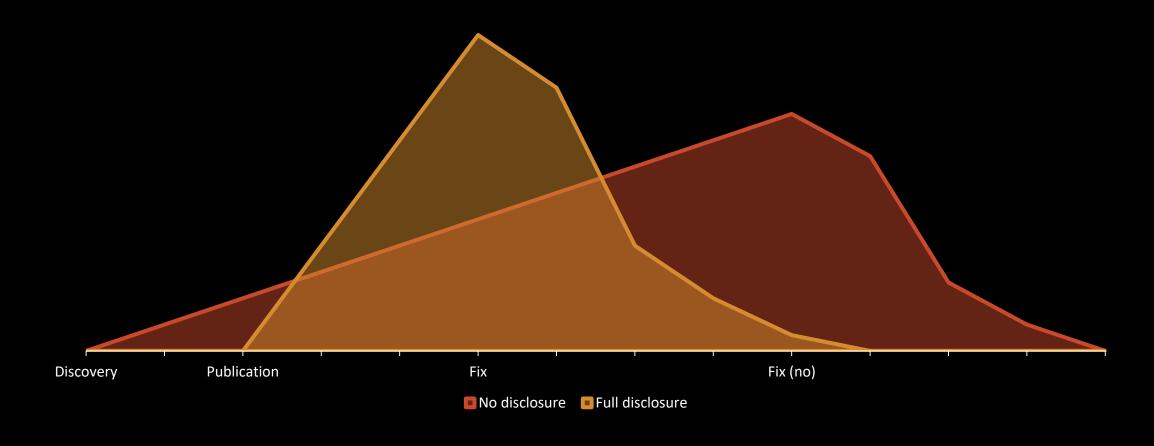
Sell exploits

(no fix means high exploit value)

Life of a vulnerability threat

No Disclosure

Full Disclosure Publish everything


Force editors to fix

(avoid further exploitation)

Be credited

(and becomes famous)

Life of a vulnerability threat Full Disclosure

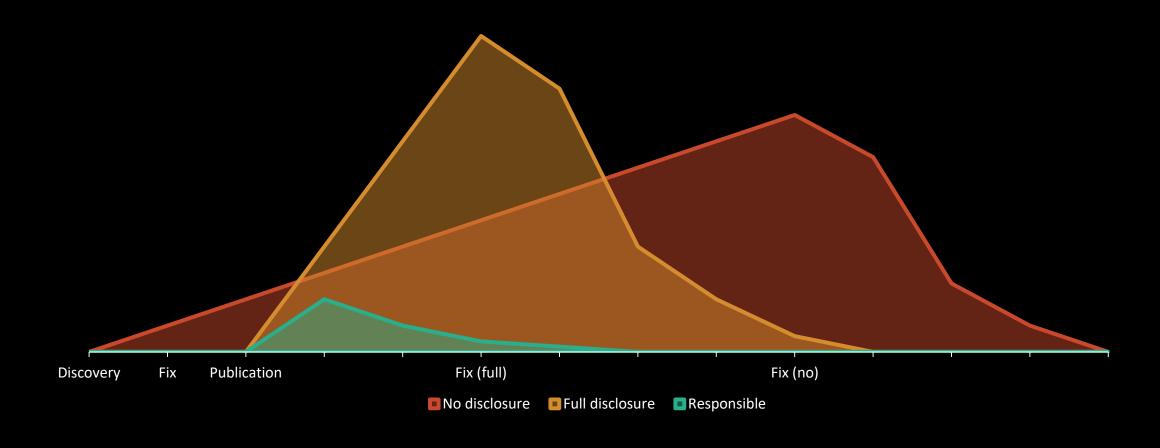
Responsible Disclosure

Brave new world

Tell editor

(negociate a delay)

Then publish


(and becomes famous)

Get a bounty

(and becomes rich)

Life of a vulnerability threat

Responsible disclosure

World Wide Vulnerability Database

CVE

(Common Vulnerability and Exposure)

Unique Identifier

(CVE-AAAA-NNNN)

Edited by MITRE

https://www.cve.org/

Common Vulnerability Scoring System Score /10

Base score

Options

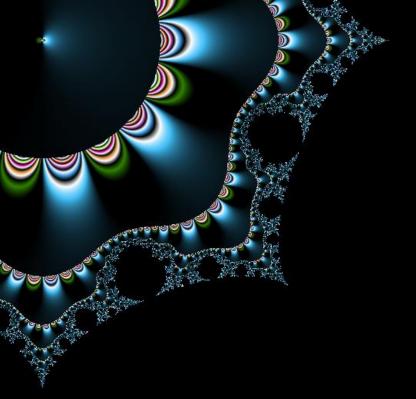
Likelihood

Exploitation

Vector, Complexity, Authentication

Temporal

Exploit, fix, confidence


Criticity

Impact

Confidentiality, Integrity, Availability

Environment

Use's context

How this is handled?

The real world is full of human beings

Full of Politics It's not a vulnerability (it's a feature)

When auditing: Scope

Marketing vs reality

When bug bounting: Scope and Score

Marketing and Budget vs bounties

Which side of the force?

Asymetrical confrontation

	Blue team (defense)	Red team (attacks)
Defeat	Bad consequences	
Victory	-	Positive consequences

Optimistic Ostrich

It works, everything's good
We'll see later
Nobody wants to attack us

Paranoid perfectionist

Everything must be perfect

A vulnerability is a proof of incompetence

There always remain a risk

Constructive humility

Where are the weaknesses?

How can we fix them?

Continuous improvement

« It's not perfect but we work toward »